Skip to Content

Ioannis Koktzoglou , PhD

Research Scientist III
Department of Radiology
Center for Advanced Imaging

Senior Clinician Researcher
University of Chicago, Pritzker School of Medicine

Contact Information

 847.570.2942 Fax


  • Ph.D. in Biomedical Engineering, Northwestern University, Evanston, IL
  • M.S. in Biomedical Engineering, Northwestern University, Evanston, IL
  • B.S. in Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL

Research and Academic Interests

Our lab develops and validates next-generation magnetic resonance imaging (MRI) technologies for evaluating cardiovascular disease, with a particular emphasis on accurate, reliable, and patient-friendly methods for assessing vascular disease throughout the body. Our research ranges from the development of altogether new MRI acquisition and reconstruction methods, to the validation of these innovative approaches for diagnosing human disease.

Recent research efforts have included the development of accurate and quantitative MRI methods for rapid anatomic and hemodynamic evaluation of patients with suspected stroke, as well as leveraging machine learning and artificial intelligence (AI) to expand the capabilities of MRI for shortening scan times, improving image quality and diagnostic accuracy, with the aim of ultimately improving patient care.

Career Summary

Ioannis Koktzoglou, PhD is a Research Scientist at NorthShore University HealthSystem Research Institute and a Senior Clinician Researcher at the University of Chicago Pritzker School of Medicine who specializes in cardiovascular magnetic resonance imaging.  He received his undergraduate degree in engineering at the University of Illinois at Urbana-Champaign as well as his Master's and Doctoral degrees in Biomedical Engineering from Northwestern University.  At Northwestern, his doctoral research focused on the development of novel three-dimensional magnetic resonance imaging (MRI) techniques that enabled high-resolution evaluation of arterial disease.  Dr. Koktzoglou's doctoral work was instrumental in transitioning the field away from legacy two-dimensional MRI methods, to more informative and precise three-dimensional techniques that have since become the norm.  At NorthShore Research Institute, he has developed several advanced MRI technologies for diagnosing vascular imaging that do not require the use of intravenous contrast agents. One of these methods has since become commercially available to improve patient care and safety throughout the world.  Dr. Koktzoglou has previously served as faculty within the Northwestern University Feinberg School of Medicine.  He has served as principal investigator and co-investigator on projects supported by the National Institutes of Health and American Heart Association, authored or co-authored 65 peer-reviewed journal publications, delivered or contributed to over 160 presentations at international scientific meetings, and is an inventor of 14 issued US patents.

Honors and Awards

  • Distinguished Reviewer, Magnetic Resonance in Medicine, 2011, 2014-2015, 2017-2019
  • Distinguished Reviewer, Journal of Magnetic Resonance Imaging, 2012-2013, 2015, 2017-2018
  • Early Career Reviewer Program, National Institutes of Health, 2015
  • Pohost Best Paper Award Finalist, Journal of Cardiovascular Magnetic Resonance, 2008
  • Research Scholar Award, The Auxiliary of Evanston Northwestern Healthcare, 2007-2009
  • Student Stipend Award, International Society for Magnetic Resonance in Medicine, 2004-2006
  • Invited Young Researcher, 55th Meeting of Nobel Prize Winners, Lindau, 2005
  • Dr. John N. Nicholson Fellowship, The Graduate School, Northwestern University, 2003-2006
  • Biomedical Engineering Departmental Fellowship, Northwestern University, 2002
  • High Honors Graduate, University of Illinois College of Engineering, 2002
  • Dad’s Association Book Award, University of Illinois at Urbana-Champaign, 2001
  • Accenture Outstanding Engineering Student Award, University of Illinois, 2001
  • Frank C. Mock Scholarship, University of Illinois at Urbana-Champaign, 2001
  • Jules D. Falzer Memorial Scholarship, University of Illinois at Urbana-Champaign, 2000-2001
  • AHEPA Scholarship, 1998-1999
  • Dean’s List, University of Illinois at Urbana-Champaign, 1998-2002

Professional Memberships/Affiliations/Activities

  • Member, International Society for Magnetic Resonance in Medicine
  • Member, Society for Cardiovascular Magnetic Resonance

Scholarly Work

Peer-Reviewed Journal Publications:

  1. Aherne EA, Koktzoglou I, Lind BB, Edelman RR. Dynamic quantitative nonenhanced magnetic resonance angiography of the abdominal aorta and lower extremities using cine fast interrupted steady-state in combination with arterial spin labeling: a feasibility study. J Cardiovasc Magn Reson. 2019 Sep 2;21(1):55. 10.1186/s12968-019-0562-3.
  2. Peters S, Huhndorf M, Jensen-Kondering U, Larsen N, Koktzoglou I, Edelman RR, Graessner J, Both M, Jansen O, Salehi Ravesh M. Non-Contrast-Enhanced Carotid MRA: Clinical Evaluation of a Novel Ungated Radial Quiescent-Interval Slice-Selective MRA at 1.5T. AJNR Am J Neuroradiol. 2019 Sep;40(9):1529-1537. doi: 10.3174/ajnr.A6171. Epub 2019 Aug 8.
  3. Bastiaansen JAM, Piccini D, Di Sopra L, Roy CW, Heerfordt J, Edelman RR, Koktzoglou I, Yerly J, Stuber M. Natively fat-suppressed 5D whole-heart MRI with a radial free-running fast-interrupted steady-state (FISS) sequence at 1.5T and 3T. Magn Reson Med. 2019 Aug 27.
  4. Varga-Szemes A, Aherne EA, Schoepf UJ, Todoran TM, Koktzoglou I, Edelman RR. Free-Breathing Fast Low-Angle Shot Quiescent-Interval Slice-Selective Magnetic Resonance Angiography for Improved Detection of Vascular Stenoses in the Pelvis and Abdomen: Technical Development. Invest Radiol. 2019 Jul 9. 10.1097/RLI.0000000000000592. [Epub ahead of print]
  5. Salehi Ravesh M, Langguth P, Pfarr JA, Schupp J, Trentmann J, Koktzoglou I, Edelman RR, Graessner J, Greiser A, Hautemann D, Hennemuth A, Both M, Jansen O, Hövener JB, Schäfer JP. Non-contrast-enhanced magnetic resonance imaging for visualization and quantification of endovascular aortic prosthesis, their endoleaks and aneurysm sacs at 1.5 T. Magn Reson Imaging. 2019 Jul;60:164-172. doi: 10.1016/j.mri.2019.05.012. Epub 2019 May 7.
  6. Koktzoglou I, Aherne EA, Walker MT, Meyer JR, Edelman RR. Ungated nonenhanced radial quiescent interval slice-selective (QISS) magnetic resonance angiography of the neck: Evaluation of image quality. J Magn Reson Imaging. 2019 May 11. 10.1002/jmri.26781. [Epub ahead of print]
  7. Cavallo AU, Koktzoglou I, Edelman RR, Gilkeson R, Mihai G, Shin T, Rajagopalan S. Noncontrast Magnetic Resonance Angiography for the Diagnosis of Peripheral Vascular Disease. Circ Cardiovasc Imaging. 2019 May;12(5):e008844. 10.1161/CIRCIMAGING.118.008844.
  8. Serhal A, Koktzoglou I, Edelman RR. Feasibility of Image Fusion for Concurrent MRI Evaluation of Vessel Lumen and Vascular Calcifications in Peripheral Arterial Disease. AJR Am J Roentgenol. 2019 Apr;212(4):914-918. Epub 2019 Feb 4.
  9. Edelman RR, Koktzoglou I. Noncontrast MR angiography: An update. J Magn Reson Imaging. 2019 Feb;49(2):355-373. Review.
  10. Edelman RR, Carr M, Koktzoglou I. Advances in non-contrast quiescent-interval slice-selective (QISS) magnetic resonance angiography. Clin Radiol. 2019 Jan;74(1):29-36.
  11. Shen D, Edelman RR, Robinson JD, Haji-Valizadeh H, Messina M, Giri S, Koktzoglou I, Rigsby CK, Kim D. Single-Shot Coronary Quiescent-Interval Slice-Selective Magnetic Resonance Angiography Using Compressed Sensing: A Feasibility Study in Patients With Congenital Heart Disease. J Comput Assist Tomogr. 2018 Sep/Oct;42(5):739-746.
  12. Serhal A, Koktzoglou I, Aouad P, Carr JC, Giri S, Morcos O, Edelman RR. Cardiovascular magnetic resonance imaging of aorto-iliac and ilio-femoral vascular calcifications using proton density-weighted in-phase stack of stars. J Cardiovasc Magn Reson. 2018 Aug 6;20(1):51.
  13. Koktzoglou I, Edelman RR. Radial fast interrupted steady-state (FISS) magnetic resonance imaging. Magn Reson Med. 2018 Apr;79(4):2077-2086. 10.1002/mrm.26881. Epub 2017 Aug 30.
  14. Edelman RR, Serhal A, Pursnani A, Pang J, Koktzoglou I. Cardiovascular cine imaging and flow evaluation using Fast Interrupted Steady-State (FISS) magnetic resonance. J Cardiovasc Magn Reson. 2018 Feb 19;20(1):12. 10.1186/s12968-018-0433-3.
  15. Koktzoglou I, Edelman RR. Super-resolution intracranial quiescent interval slice-selective magnetic resonance angiography. Magn Reson Med. 2018 Feb;79(2):683-691.
  16. Lim RP, Trajcevska E, Al Rawi F, Gooneratne D, Ang W, Perchyonok Y, Fitt G, Kemp A, Giri S, Piccini D, Brodtmann A, Dewey H, Koktzoglou I. Noncontrast Hybrid Arterial Spin-Labeled Imaging of the Intracranial Arteries. J Comput Assist Tomogr. 2017 Nov/Dec;41(6):854-860.
  17. Edelman RR, Silvers RI, Thakrar KH, Metzl MD, Nazari J, Giri S, Koktzoglou I. Nonenhanced MR angiography of the pulmonary arteries using single-shot radial quiescent-interval slice-selective (QISS): a technical feasibility study. J Cardiovasc Magn Reson. 2017 Jun 30;19(1):48.
  18. Ferreira Botelho MP, Koktzoglou I, Collins JD, Giri S, Carr JC, Gupta N, Edelman RR. MR imaging of iliofemoral peripheral vascular calcifications using proton density-weighted, in-phase three-dimensional stack-of-stars gradient echo. Magn Reson Med. 2017 Jun;77(6):2146-2152. 14.
  19. Hodnett PA, Koktzoglou I, Davarpanah AH, Scanlon TG, Collins JD, Sheehan JJ, Dunkle EE, Gupta N, Carr JC, Edelman RR. Evaluation of Peripheral Arterial Disease with Nonenhanced Quiescent-Interval Single-Shot MR Angiography. Radiology. 2017 Feb;282(2):614.
  20. Edelman RR, Botelho M, Pursnani A, Giri S, Koktzoglou I. Improved dark blood imaging of the heart using radial balanced steady-state free precession. J Cardiovasc Magn Reson. 2016 Oct 19;18(1):69.
  21. Koktzoglou I, Murphy IG, Giri S, Edelman RR. Quiescent interval low angle shot magnetic resonance angiography of the extracranial carotid arteries. Magn Reson Med. 2016 May;75(5):2072-7.
  22. Koktzoglou I, Walker MT, Meyer JR, Murphy IG, Edelman RR. Nonenhanced hybridized arterial spin labeled magnetic resonance angiography of the extracranial carotid arteries using a fast low angle shot readout at 3 Tesla. J Cardiovasc Magn Reson. 2016 Apr 12;18:18.
  23. Koktzoglou I, Giri S, Piccini D, Grodzki DM, Flanagan O, Murphy IG, Gupta N, Collins JD, Edelman RR. Arterial spin labeled carotid MR angiography: A phantom study examining the impact of technical and hemodynamic factors. Magn Reson Med. 2016 Jan;75(1):295-301.
  24. Edelman RR, Giri S, Pursnani A, Botelho MP, Li W, Koktzoglou I. Breath-hold imaging of the coronary arteries using Quiescent-Interval Slice-Selective (QISS) magnetic resonance angiography: pilot study at 1.5 Tesla and 3 Tesla. J Cardiovasc Magn Reson. 2015 Nov 23;17:101.
  25. Edelman RR, Flanagan O, Grodzki D, Giri S, Gupta N, Koktzoglou I. Projection MR imaging of peripheral arterial calcifications. Magn Reson Med. 2015 May;73(5):1939-45.
  26. Lim RP, Koktzoglou I. Noncontrast magnetic resonance angiography: concepts and clinical applications. Radiol Clin North Am. 2015 May;53(3):457-76. 10.1016/j.rcl.2014.12.003. Review.
  27. Koktzoglou I, Meyer JR, Ankenbrandt WJ, Giri S, Piccini D, Zenge MO, Flanagan O, Desai T, Gupta N, Edelman RR. Nonenhanced arterial spin labeled carotid MR angiography using three-dimensional radial balanced steady-state free precession imaging. J Magn Reson Imaging. 2015 Apr;41(4):1150-6. Epub 2014 Apr 16.
  28. Edelman RR, Giri S, Murphy IG, Flanagan O, Speier P, Koktzoglou I. Ungated radial quiescent-inflow single-shot (UnQISS) magnetic resonance angiography using optimized azimuthal equidistant projections. Magn Reson Med. 2014 Dec;72(6):1522-9.
  29. Koktzoglou I, Mistretta CA, Giri S, Dunkle EE, Amin P, Edelman RR. Simultaneous static and cine nonenhanced MR angiography using radial sampling and highly constrained back projection reconstruction. Magn Reson Med. 2014 Oct;72(4):1079-86.
  30. Amin P, Collins JD, Koktzoglou I, Molvar C, Markl M, Edelman RR, Carr JC. Evaluating peripheral arterial disease with unenhanced quiescent-interval single-shot MR angiography at 3 T. AJR Am J Roentgenol. 2014 Apr;202(4):886-93. doi: 10.2214/AJR.13.11243.
  31. Tan H, Koktzoglou I, Prasad PV. Renal perfusion imaging with two-dimensional navigator gated arterial spin labeling. Magn Reson Med. 2014 Feb;71(2):570-9. doi: 10.1002/mrm.24692.
  32. Edelman RR, Giri S, Dunkle E, Galizia M, Amin P, Koktzoglou I. Quiescent-inflow single-shot magnetic resonance angiography using a highly undersampled radial k-space trajectory. Magn Reson Med. 2013 Dec;70(6):1662-8. doi: 10.1002/mrm.24596. Epub 2013 Jan 24.
  33. Koktzoglou I. Gray blood magnetic resonance for carotid wall imaging and visualization of deep-seated and superficial vascular calcifications. Magn Reson Med. 2013 Jul;70(1):75-85.
  34. Koktzoglou I. 4D Dark blood arterial wall magnetic resonance imaging: methodology and demonstration in the carotid arteries. Magn Reson Med. 2013 Apr;69(4):956-65.
  35. Offerman EJ, Koktzoglou I, Glielmi C, Sen A, Edelman RR. Prospective self-gated nonenhanced magnetic resonance angiography of the peripheral arteries. Magn Reson Med. 2013 Jan;69(1):158-62.
  36. Mordini FE, Koktzoglou I, Edelman RR. Time-resolved spin-labeled balanced steady-state free precession cineangiography for visualizing intracardiac shunt: technical considerations and clinical feasibility. Magn Reson Med. 2012 Dec;68(6):1798-806.
  37. Tan H, Koktzoglou I, Glielmi C, Galizia M, Edelman RR. Optimization of single shot 3D breath-hold non-enhanced MR angiography of the renal arteries. J Cardiovasc Magn Reson. 2012 May 19;14:30.
  38. Hodnett PA, Ward EV, Davarpanah AH, Scanlon TG, Collins JD, Glielmi CB, Bi X, Koktzoglou I, Gupta N, Carr JC, Edelman RR. Peripheral arterial disease in a symptomatic diabetic population: prospective comparison of rapid unenhanced MR angiography (MRA) with contrast-enhanced MRA. AJR Am J Roentgenol. 2011 Dec;197(6):1466-73.
  39. Koktzoglou I, Gupta N, Edelman RR. Nonenhanced extracranial carotid MR angiography using arterial spin labeling: improved performance with pseudocontinuous tagging. J Magn Reson Imaging. 2011 Aug;34(2):384-94. 10.1002/jmri.22628.
  40. Hodnett PA, Koktzoglou I, Davarpanah AH, Scanlon TG, Collins JD, Sheehan JJ, Dunkle EE, Gupta N, Carr JC, Edelman RR. Evaluation of peripheral arterial disease with nonenhanced quiescent-interval single-shot MR angiography. Radiology. 2011 Jul;260(1):282-93. 18. Erratum in: Radiology. 2017 Feb;282(2):614.
  41. Offerman EJ, Hodnett PA, Edelman RR, Koktzoglou I. Nonenhanced methods for lower-extremity MRA: a phantom study examining the effects of stenosis and pathologic flow waveforms at 1.5T. J Magn Reson Imaging. 2011 Feb;33(2):401-8. doi: 10.1002/jmri.22457.
  42. Koktzoglou I, Sheehan JJ, Dunkle EE, Breuer FA, Edelman RR. Highly accelerated contrast-enhanced MR angiography: improved reconstruction accuracy and reduced noise amplification with complex subtraction. Magn Reson Med. 2010 Dec;64(6):1843-8.
  43. Haque M, Koktzoglou I, Li W, Carbray J, Prasad P. Functional MRI of liver using BOLD MRI: effect of glucose. J Magn Reson Imaging. 2010 Oct;32(4):988-91. doi: 10.1002/jmri.22329.
  44. McCommis KS, Koktzoglou I, Zhang H, Goldstein TA, Northrup BE, Li D, Gropler RJ, Zheng J. Improvement of hyperemic myocardial oxygen extraction fraction estimation by a diffusion-prepared sequence. Magn Reson Med. 2010 Jun;63(6):1675-82.
  45. Wu Y, Ragin AB, Du H, Sidharthan S, Dunkle EE, Koktzoglou I, Edelman RR. Sub-millimeter isotropic MRI for segmentation of subcortical brain regions and brain visualization. J Magn Reson Imaging. 2010 Apr;31(4):980-6. 10.1002/jmri.22120.
  46. Edelman RR, Sheehan JJ, Dunkle E, Schindler N, Carr J, Koktzoglou I. Quiescent-interval single-shot unenhanced magnetic resonance angiography of peripheral vascular disease: Technical considerations and clinical feasibility. Magn Reson Med. 2010 Apr;63(4):951-8.
  47. Tsaftaris SA, Offerman E, Edelman RR, Koktzoglou I. Fully automated reconstruction of ungated ghost magnetic resonance angiograms. J Magn Reson Imaging. 2010 Mar;31(3):655-62.
  48. Dharmakumar R, Zhang Z, Koktzoglou I, Tsaftaris SA, Li D. Dual-contrast cellular magnetic resonance imaging. Mol Imaging. 2009 Sep-Oct;8(5):254-63.
  49. Edelman RR, Koktzoglou I, Ankenbrandt WJ, Dunkle EE. Cerebral venography using fluid-suppressed STARFIRE. Magn Reson Med. 2009 Aug;62(2):538-43. 10.1002/mrm.22026.
  50. Koktzoglou I, Edelman RR. Ghost magnetic resonance angiography. Magn Reson Med. 2009 Jun;61(6):1515-9.
  51. Edelman RR, Dunkle E, Koktzoglou I, Griffin A, Russell EJ, Ankenbrandt W, Ragin A, Carrillo A. Rapid whole-brain magnetic resonance imaging with isotropic resolution at 3 Tesla. Invest Radiol. 2009 Jan;44(1):54-9. 10.1097/RLI.0b013e31818eee3c.
  52. Koktzoglou I, Edelman RR. STAR and STARFIRE for flow-dependent and flow-independent noncontrast carotid angiography. Magn Reson Med. 2009 Jan;61(1):117-24.
  53. Edelman RR, Koktzoglou I. Unenhanced flow-independent MR venography by using signal targeting alternative radiofrequency and flow-independent relaxation enhancement. Radiology. 2009 Jan;250(1):236-45.
  54. Koktzoglou I, Edelman RR. Fast projective carotid MR angiography using arterial spin-labeled balanced SSFP. J Magn Reson Imaging. 2008 Sep;28(3):778-82. doi: 10.1002/jmri.21476.
  55. Dharmakumar R, Koktzoglou I, Tang R, Harris KR, Beohar N, Li D. Off-resonance positive contrast imaging of a passive endomyocardial catheter in swine. Phys Med Biol. 2008 Jul 7;53(13):N249-57. 19.
  56. Koktzoglou I, Kirpalani A, Carroll TJ, Li D, Carr JC. Dark-blood MRI of the thoracic aorta with 3D diffusion-prepared steady-state free precession: initial clinical evaluation. AJR Am J Roentgenol. 2007 Oct;189(4):966-72.
  57. Koktzoglou I, Li D, Dharmakumar R. Dephased FLAPS for improved visualization of susceptibility-shifted passive devices for real-time interventional MRI. Phys Med Biol. 2007 Jul 7;52(13):N277-86. Epub 2007 May 25.
  58. Dharmakumar R, Koktzoglou I, Li D. Factors influencing fast low angle positive contrast steady-state free precession (FLAPS) magnetic resonance imaging. Phys Med Biol. 2007 Jun 7;52(11):3261-73. Epub 2007 May 15.
  59. Koktzoglou I, Li D. Submillimeter isotropic resolution carotid wall MRI with swallowing compensation: imaging results and semiautomated wall morphometry. J Magn Reson Imaging. 2007 Apr;25(4):815-23.
  60. Koktzoglou I, Chung YC, Carroll TJ, Simonetti OP, Morasch MD, Li D. Three-dimensional black-blood MR imaging of carotid arteries with segmented steady-state free precession: initial experience. Radiology. 2007 Apr;243(1):220-8.
  61. Koktzoglou I, Li D. Diffusion-prepared segmented steady-state free precession: Application to 3D black-blood cardiovascular magnetic resonance of the thoracic aorta and carotid artery walls. J Cardiovasc Magn Reson. 2007;9(1):33-42.
  62. Dharmakumar R, Koktzoglou I, Li D. Generating positive contrast from off-resonant spins with steady-state free precession magnetic resonance imaging: theory and proof-of-principle experiments. Phys Med Biol. 2006 Sep 7;51(17):4201-15. Epub 2006 Aug 8.
  63. Koktzoglou I, Chung YC, Mani V, Carroll TJ, Morasch MD, Mizsei G, Simonetti OP, Fayad ZA, Li D. Multislice dark-blood carotid artery wall imaging: a 1.5 T and 3.0 T comparison. J Magn Reson Imaging. 2006 May;23(5):699-705.
  64. Koktzoglou I, Harris KR, Tang R, Kane BJ, Misselwitz B, Weinmann HJ, Lu B, Nagaraj A, Roth SI, Carroll TJ, McPherson DD, Li D. Gadofluorine-enhanced magnetic resonance imaging of carotid atherosclerosis in Yucatan miniswine. Invest Radiol. 2006 Mar;41(3):299-304.
  65. Koktzoglou I, Simonetti O, Li D. Coronary artery wall imaging: initial experience at 3 Tesla. J Magn Reson Imaging. 2005 Feb;21(2):128-32.


U.S. Patents:

  • "System and method for hybrid radiofrequency labeling for magnetic resonance imaging" US Patent Number 10,413,213
  • "Systems and methods for imaging vascular calcifications with magnetic resonance imaging" US Patent Number 10,401,459
  • "System and method for neutral contrast magnetic resonance imaging of calcifications" US Patent Number 10,362,961
  • "Background-suppressed, reduced field-of-view radial magnetic resonance imaging" US Patent Number 10,188,355
  • "Systems and methods for efficient radial magnetic resonance imaging with azimuthal equidistant projections" US Patent Number 10,120,048
  • "System and method for accelerated angiographic magnetic resonance imaging" US Patent Number 10,061,006
  • "System and method for imaging of the vascular components with temporal information and suppressed blood pools using magnetic resonance imaging" US Patent Number 9,968,276
  • "System and method for imaging of vascular structures using non-contrast enhanced magnetic resonance imaging" US Patent Number 9,507,003
  • "System and method for ungated non-contrast enhanced magnetic resonance angiography" US Patent Number 9,113,810
  • "System and method for phase contrast imaging with improved efficiency" US Patent Number 8,838,204
  • "Method for non-contrast enhanced magnetic resonance angiography" US Patent Number 8,744,551
  • "Time resolved spin labeled MRI cineangiography" US Patent Number 8,441,257
  • "Parallel-accelerated complex subtraction MRI" US Patent Number 8,274,284
  • "System and method for ghost magnetic resonance imaging" US Patent Number 8,154,287

Peer Review Service:

  • Reviewer for multiple scientific journals, including:  Magnetic Resonance in Medicine, Journal of Magnetic Resonance Imaging, Journal of Cardiovascular Magnetic Resonance, Radiology, Circulation: Cardiovascular Imaging, American Journal of Roentgenology, Magn. Reson. Materials in Physics Biology & Medicine, PLOS ONE, NMR in Biomedicine, Clinical Medicine Cardiology, European Journal of Nuclear Medicine and Molecular Imaging, Korean Journal of Radiology, Medical Physics, Magnetic Resonance Imaging, American Journal of Neuroradiology