Laura K. Bianchi, M.D.

Laura K. Bianchi, M.D.

Laura K. Bianchi, M.D.

Log into NorthShoreConnect

Profile

Conditions & Procedures

Conditions

Colon Polyps, Colorectal Cancer, Inherited Colorectal Cancer Syndromes

Procedures

Chromoendoscopy, Colonoscopy, Esophagogastroduodenoscopy (EGD), Flexible Sigmoidoscopy, Percutaneous Endoscopic Gastrostomy (PEG), Upper Endoscopy, Variceal and Non Variceal Hemostasis

General Information

Gender

Female

Affiliation

NorthShore Medical Group

Expertise

Colorectal Cancer Prevention, Colon Polyps, Genetics of Colorectal Cancer

Academic Rank

Clinical Assistant Professor

Languages

English

Board Certified

Gastroenterology, Internal Medicine

Clinical Service

Education, Training & Fellowships

Medical School

Northwestern Feinberg School of Medicine, 2001

Internship

Northwestern Feinberg School of Medicine, 2002

Residency

Northwestern Feinberg School of Medicine, 2004

Fellowship

Cleveland Clinic Foundation, 2007

Locations

A

NorthShore Medical Group

1000 Central St.
Suite 615
Evanston, IL 60201
847.657.1900 847.570.1534 fax This location is wheelchair accessible.

Insurance

Every effort has been made to ensure the accuracy of the information in this directory. However, some changes may occur between updates. Please check with your provider to ensure that he or she participates in your health plan.

Aetna HMO/PPO/POS
BCBS HMOI
BCBS PPO *except Blue Choice IL
Beechstreet PPO
CCN PPO
CIGNA Choice Fund
CIGNA Choice Fund PPO
CIGNA EPO
CIGNA Network
CIGNA Network Open Access
CIGNA POS
CIGNA POS Open Access
CIGNA PPO
CIGNA:Open Access Plus
First Health PPO
Galaxy PPO
Great West POS
Great West PPO
Healthcares Finest Network PPO
Humana Choice Care PPO
Humana IPA--HMO
Humana POS
Humana PPO
Land of Lincoln
Medicare
Multiplan Admar PPO
Multiplan Formost PPO
Multiplan Health Network PPO
Multiplan Wellmark PPO
NorthShore Employee Network I (EPO Option)
NorthShore Employee Network II (EPO Plus & CDHP)
PHCS PPO
Preferred Plan PPO
Railroad Medicare - Cook County
UHC *except Core & Navigate
Unicare PPO

Publications

  • Spatially resolved optical and ultrastructural properties of colorectal and pancreatic field carcinogenesis observed by inverse spectroscopic optical coherence tomography.

    Journal of biomedical optics 2014 Mar

    Authors: Yi J,
    Abstract
    Field carcinogenesis is the initial stage of cancer progression. Understanding field carcinogenesis is valuable for both cancer biology and clinical medicine. Here, we used inverse spectroscopic optical coherence tomography to study colorectal cancer (CRC) and pancreatic cancer (PC) field carcinogenesis. Depth-resolved optical and ultrastructural properties of the mucosa were quantified from histologically normal rectal biopsies from patients with and without colon adenomas (n=85) as well as from histologically normal peri-ampullary duodenal biopsies from patients with and without PC (n=22). Changes in the epithelium and stroma in CRC field carcinogenesis were separately quantified. In both compartments, optical and ultra-structural alterations were consistent. Optical alterations included lower backscattering (μb) and reduced scattering (μs') coefficients and higher anisotropy factor g. Ultrastructurally pronounced alterations were observed at length scales up to ∼450  nm, with the shape of the mass density correlation function having a higher shape factor D, thus implying a shift to larger length scales. Similar alterations were found in the PC field carcinogenesis despite the difference in genetic pathways and etiologies. We further verified that the chromatin clumping in epithelial cells and collagen cross-linking caused D to increase in vitro and could be among the mechanisms responsible for the observed changes in epithelium and stroma, respectively.
    PMID: 24643530 [PubMed - as supplied by publisher]
  • Nanoscale changes in chromatin organization represent the initial steps of tumorigenesis: a transmission electron microscopy study.

    BMC cancer 2014

    Authors: Cherkezyan L, Stypula-Cyrus Y, Subramanian H, White C, Dela Cruz M, Wali RK, Goldberg MJ, Bianchi LK, Roy HK, Backman V,
    Abstract
    Nuclear alterations are a well-known manifestation of cancer. However, little is known about the early, microscopically-undetectable stages of malignant transformation. Based on the phenomenon of field cancerization, the tissue in the field of a tumor can be used to identify and study the initiating events of carcinogenesis. Morphological changes in nuclear organization have been implicated in the field of colorectal cancer (CRC), and we hypothesize that characterization of chromatin alterations in the early stages of CRC will provide insight into cancer progression, as well as serve as a biomarker for early detection, risk stratification and prevention.
    For this study we used transmission electron microscopy (TEM) images of nuclei harboring pre-neoplastic CRC alterations in two models: a carcinogen-treated animal model of early CRC, and microscopically normal-appearing tissue in the field of human CRC. We quantify the chromatin arrangement using approaches with two levels of complexity: 1) binary, where chromatin is separated into areas of dense heterochromatin and loose euchromatin, and 2) grey-scale, where the statistics of continuous mass-density distribution within the nucleus is quantified by its spatial correlation function.
    We established an increase in heterochromatin content and clump size, as well as a loss of its characteristic peripheral positioning in microscopically normal pre-neoplastic cell nuclei. Additionally, the analysis of chromatin density showed that its spatial distribution is altered from a fractal to a stretched exponential.
    We characterize quantitatively and qualitatively the nanoscale structural alterations preceding cancer development, which may allow for the establishment of promising new biomarkers for cancer risk stratification and diagnosis. The findings of this study confirm that ultrastructural changes of chromatin in field carcinogenesis represent early neoplastic events leading to the development of well-documented, microscopically detectable hallmarks of cancer.
    PMID: 24629088 [PubMed - as supplied by publisher]
  • Ultrastructural alterations in field carcinogenesis measured by enhanced backscattering spectroscopy.

    Journal of biomedical optics 2013 Sep

    Authors: Radosevich AJ,
    Abstract
    Optical characterization of biological tissue in field carcinogenesis offers a method with which to study the mechanisms behind early cancer development and the potential to perform clinical diagnosis. Previously, low-coherence enhanced backscattering spectroscopy (LEBS) has demonstrated the ability to discriminate between normal and diseased organs based on measurements of histologically normal-appearing tissue in the field of colorectal (CRC) and pancreatic (PC) cancers. Here, we implement the more comprehensive enhanced backscattering (EBS) spectroscopy to better understand the structural and optical changes which lead to the previous findings. EBS provides high-resolution measurement of the spatial reflectance profile P(rs) between 30 microns and 2.7 mm, where information about nanoscale mass density fluctuations in the mucosa can be quantified. A demonstration of the length-scales at which P(rs) is optimally altered in CRC and PC field carcinogenesis is given and subsequently these changes are related to the tissue's structural composition. Three main conclusions are made. First, the most significant changes in P(rs) occur at short length-scales corresponding to the superficial mucosal layer. Second, these changes are predominantly attributable to a reduction in the presence of subdiffractional structures. Third, similar trends are seen for both cancer types, suggesting a common progression of structural alterations in each.
    PMID: 24008865 [PubMed - as supplied by publisher]
  • Nanocytology of rectal colonocytes to assess risk of colon cancer based on field cancerization.

    Cancer research 2012 Jun 1

    Authors: Damania D,
    Abstract
    Developing a minimally invasive and cost-effective prescreening strategy for colon cancer is critical because of the impossibility of conducting colonoscopy on the entire at-risk population. The concept of field carcinogenesis, in which normal-appearing tissue away from a tumor has molecular and, consequently, nano-architectural abnormalities, offers one attractive approach to identify high-risk patients. In this study, we investigated whether the novel imaging technique partial wave spectroscopic (PWS) microscopy could risk-stratify patients harboring precancerous lesions of the colon, using an optically measured biomarker (L(d)) obtained from microscopically normal but nanoscopically altered cells. Rectal epithelial cells were examined from 146 patients, including 72 control patients, 14 patients with diminutive adenomas, 20 patients with nondiminutive/nonadvanced adenomas, 15 patients with advanced adenomas/high-grade dysplasia, 12 patients with genetic mutation leading to Lynch syndrome, and 13 patients with cancer. We found that the L(d) obtained from rectal colonocytes was well correlated with colon tumorigenicity in our patient cohort and in an independent validation set of 39 additional patients. Therefore, our findings suggest that PWS-measured L(d) is an accurate marker of field carcinogenesis. This approach provides a potential prescreening strategy for risk stratification before colonoscopy.
    PMID: 22491589 [PubMed - as supplied by publisher]
  • Sex-specific prevalence of adenomas and colorectal cancer.

    JAMA : the journal of the American Medical Association 2012 Jan 11

    Authors: Yen EF,
    Abstract
    Microscopic colitis is currently considered to harbor no increased risk for colorectal cancer, based on a few small studies with limited long-term follow-up. Our aim was to identify patients with microscopic colitis, and to compare long-term rates of colorectal cancer or adenoma to a control group of patients without microscopic colitis.
    We reviewed the records of patients diagnosed with microscopic colitis, as identified by a hospital-based pathology database from January 2000 to August 2008. Clinical factors, including history of adenoma or adenocarcinoma, and all colonoscopy findings, were recorded. Age and gender-matched patients without microscopic colitis served as the control in a 1:1 fashion.
    A total of 647 patients (153 male: 494 female) were identified with microscopic colitis (MC). Any history of colorectal cancer was detected in 1.92, 1.81, and 4.17% of patients with collagenous colitis (CC), lymphocytic colitis (LC), and controls, respectively (P = 0.095, P = 0.040, P = 0.015 for CC, LC, and all MC, respectively, comparing to controls). Overall, covariate-adjusted risk (odds ratio) of any history of colorectal cancer and colorectal adenoma in MC patients was 0.34 (95% confidence interval [CI] 0.16-0.73, P = 0.006) and 0.52 (95% CI 0.50-0.76, P < 0.0001), respectively. The mean duration of follow-up was 4.63 years, with 147/647 (22.7%) of patients with clinical follow-up >7 years.
    In this case-control study involving a large retrospective cohort, microscopic colitis is negatively associated with the risk for colorectal cancer and adenoma. Further studies are required to determine a temporal relationship between microscopic colitis and the future development of colorectal neoplasia.
    PMID: 22235076 [PubMed - as supplied by publisher]
  • Moving toward personalization of colorectal cancer screening: Comment on "Influence of race and sex on prevalence and recurrence of colon polyps".

    Archives of internal medicine 2010 Jul 12

    Authors: Roy HK,
    Abstract
    Flexible sigmoidoscopy is a robust, clinically validated, and widely available colorectal cancer screening technique that is currently sanctioned by major guideline organizations. Given that endoscopic visualization is generally limited to the distal third of the colon and women tend to have a proclivity for proximal lesions, the flexible sigmoidoscopy performance is markedly inferior in women than in men. Our group has shown that by using a novel light-scattering approach, we were able to detect an early increase in blood supply (EIBS) in the distal colonic mucosa, which served as a marker of field carcinogenesis and, hence, proximal neoplasia. Therefore, we sought to ascertain whether rectal EIBS would improve flexible sigmoidoscopy, especially in women. A polarization-gated spectroscopy fiber-optic probe was used to assess EIBS in the endoscopically normal rectum (n = 366). When compared with gender-matched neoplasia-free controls, females with advanced proximal neoplasia (n = 10) had a robust (60%; P = 0.002) increase in rectal mucosal oxyhemoglobin content whereas the effect size in males was less marked (33%; P = 0.052). In women, addition of rectal oxyhemoglobin tripled the sensitivity for advanced neoplasia over flexible sigmoidoscopy alone. Indeed, the performance characteristics seemed to be excellent (sensitivity, 100%; specificity, 76.8%; positive predictive value, 32.6%; and negative predictive value, 100%). A variety of nonneoplastic factors were assessed and did not confound the relationship between rectal EIBS and advanced neoplasia. Therefore, using rectal EIBS in combination with flexible sigmoidoscopy mitigated the gender gap and may allow flexible sigmoidoscopy to be considered as a viable colorectal cancer screening test in women.
    PMID: 20625019 [PubMed - as supplied by publisher]
  • Differences in colon adenomas and carcinomas among women and men: potential clinical implications.

    JAMA : the journal of the American Medical Association 2009 Oct 21

    Authors: Gomes AJ,
    Abstract
    Endoscopic examination has proven effective in both detecting and preventing colorectal cancer; however, only about a quarter of eligible patients undergo screening. Even if the compliance rate increased, limited endoscopic capacity and cost would be prohibitive. There is a need for an accurate method to target colonoscopy to those most at risk of harboring colonic neoplasia. Exploiting field carcinogenesis seems to be a promising avenue. Our group recently reported that an early increase in blood supply (EIBS) is a reliable marker of field carcinogenesis in experimental models. We now investigate whether in situ detection of EIBS in the rectum can predict neoplasia elsewhere in the colon.
    We developed a novel polarization-gated spectroscopy fiber-optic probe that allows depth-selective interrogation of microvascular blood content. Using the probe, we examined the blood content in vivo from the rectal mucosa of 216 patients undergoing screening colonoscopy.
    Microvascular blood content was increased by approximately 50% in the endoscopically normal rectal mucosa of patients harboring advanced adenomas when compared with neoplasia-free patients irrespective of lesion location. Demographic factors and nonneoplastic lesions did not confound this observation. Logistic regression using mucosal oxyhemoglobin concentration and patient age resulted in a sensitivity of 83%, a specificity of 82%, and an area under the receiver operating characteristic curve of 0.88 for the detection of advanced adenomas.
    Increased microvascular blood supply in the normal rectal mucosa is associated with the presence of clinically significant neoplasia elsewhere in the colon, supporting the development of rectal EIBS as a colon cancer risk-stratification tool.
    PMID: 19843905 [PubMed - as supplied by publisher]

In the News

Mar 2014

Social Media

× Alternate Text