Molecular Diagnostics of Cancer

Bruce Brockstein MD

Medical Director, Kellogg Cancer Center Division Head, Hematology/Oncology Clinical Professor of Medicine, University of Chicago Pritzker School of Medicine

Disclosures

- UpToDate- Editor, head and neck cancer section-Royalties
- Merck- Advisory board in last 2 years- honorarium
- Blueprint Medicines- Advisory board in last 2 yearshonorarium

Overview

- **1.** Rationale for testing
- 2. Terminology
- **3.** Cases/questions
- 4. Specific Tests
- 5. Specifics uses- tumor sites etc

Rationale-Why test

- Prognostication
- Prediction of response to therapeutics- specific tumor type
- Pathways to cancer converge- can't exclude an alteration just based on site of origin- Non-specific to tumor type/site
- Sometimes diagnostic
- Learn of individual or family member's predisposition to cancer

Terminology and examples

• Germline vs somatic

- **Genetics** inheritance/ behavior /properties /structures of genes- often applies to specific genes
- **Genomics-** study of organism's genes/sequenceshealth or disease, using sequence data/ bioinformatics, etc

Terminology and examples Organized practically

Hereditary

Germline predisposition panel- e.g. Invitae Multi-Cancer panel.

Tumor/Somatic

- <u>IHC</u>- immunohistochemistry
- <u>Single gene tests</u> e.g. EGFR mutation (pcr/ pyrosequencing)
- NGS/ Next Generation Sequencing/ Genomics panels e.g. our 50 gene hot spot panel or broad panel "Foundation One"
- Cancer of unknown Primary Panels- e.g. Caris-
- Gene expression profiling tests/Panels- e.g. Oncotype Dx breast /Decision Dx melanoma. Thyroseq v.3 d for thyroid cancer dx
- Translocation panels- again may be diagnostic/prognostic or predictive

Cancer Panels available at NorthShore

- Individual genes- pcr/pyrosequencing/Sanger sequencing- selective reporting of 50 gene panel
- 50 gene "hot spot" panel
- Hematologic malignancy panel
- Translocation panel
- New expanded panel (441 genes, 170 reported, along with "TMB")

- 58 y.o. woman with breast cancer (node negative, 1.5 cm, Her-2 negative, ER positive tumor) = intermediate risk for need for chemo added to hormone therapy
- She *will* benefit from at least 5 years of hormonal therapy
- Will she benefit from chemotherapy also?
- What test/s might you run?
- What is the category of this test?

- 58 y.o. woman with intermediate risk for chemo added to hormone therapy (node negative, 1.5 cm, Her-2 negative, ER positive tumor)
- She will benefit from at least 5 years of hormonal therapy
- Will she benefit from chemotherapy also? **MAYBE**
- What test/s might you run? ONCOTYPE DX, MAMMOPRINT
- What is the category of this test? GENE
 EXPRESSION PROFILE- PREDICITVE AND
 PROGNOSITIC

ONCOTYPE DX- "TAILORx" Trial

Trial Assigning IndividuaLized Options for TReatment (TAILORx):

Phase III trial of chemoendocrine therapy versus endocrine therapy alone in hormone receptor-positive, HER2-negative, node-negative breast cancer and an intermediate prognosis 21-gene recurrence score

Joseph A. Sparano, Robert J. Gray, William C. Wood, Della F. Makower, Tracy G. Lively, Thomas J. Saphner, Maccon M. Keane, Henry L. Gomez, Pavan Reddy, Timothy F. Goggins, Ingrid A. Mayer, Deborah Toppmeyer, Adam Brufsky, Matthew P. Goetz, Daniel F. Hayes, Elizabeth Claire Dees, Kathleen I. Pritchard, Charles E. Geyer, John A. Olson, & George W. Sledge

on behalf of the TAILORx Investigators

PRESENTED AT: 2018 ASCO ANNUAL MEETING

Slides are the property of the outhor, permission required for reuse.

PRESENTED BY: Joseph A. Sparano, MD

ONCOTYPE DX- "TAILORx" Trial

Original Article Demotherapy Guided by

Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer

Joseph A. Sparano, M.D., Robert J. Gray, Ph.D., Della F. Makower, M.D., Kathleen I. Pritchard, M.D., Kathy S. Albain, M.D., Daniel F. Hayes, M.D., Charles E. Geyer, Jr., M.D., Elizabeth C. Dees, M.D., Matthew P. Goetz, M.D., John A. Olson, Jr., M.D., Ph.D., Tracy Lively, Ph.D., Sunil S. Badve, M.B., B.S., M.D., Thomas J. Saphner, M.D., Lynne I. Wagner, Ph.D., Timothy J. Whelan, B.M., B.Ch., Matthew J. Ellis, M.B., B.Chir., Ph.D., Soonmyung Paik, M.D., William C.
Wood, M.D., Peter M. Ravdin, M.D., Maccon M. Keane, M.D., Henry L. Gomez Moreno, M.D., Pavan S. Reddy, M.D., Timothy F. Goggins, M.D., Ingrid A.
Mayer, M.D., M.S.C.I., Adam M. Brufsky, M.D., Ph.D., Deborah L. Toppmeyer, M.D., Virginia G. Kaklamani, M.D., D.Sc., Jeffrey L. Berenberg, M.D., Jeffrey Abrams, M.D., and George W. Sledge, Jr., M.D.

> N Engl J Med Volume 379(2):111-121 July 12, 2018

TH NEW ENGLAND

NorthShore 12

TAILORX RESULTS

13

e

Role of chemotherapy in woman </= 50 for recurrence free survival

End Point and Treatment Group	Rate at 5 Yr	Rate at 9 Yr
	perc	cent
Invasive disease-free survival†		
Score of \leq 10, endocrine therapy	95.1±1.1	87.4±2.0
Score of 11–15, endocrine therapy	95.1±1.1	85.7±2.2
Score of 11–15, chemoendocrine therapy	94.3±1.3	89.2±1.9
Score of 16–20, endocrine therapy	92.0±1.3	80.6±2.5
Score of 16–20, chemoendocrine therapy	94.7±1.1	89.6±1.7
Score of 21–25, endocrine therapy	86.3±2.3	79.2±3.3
Score of 21–25, chemoendocrine therapy	92.1±1.8	85.5±3.0
Score of \geq 26, chemoendocrine therapy	86.4±1.9	80.3±2.9

14

- 66 y.o. non-smoking Asian woman found to have an adenocarcinoma of the lung metastatic to the bone
- Is she likely to have a mutated tumor gene?
- Which one?
- How likely
- How will she be tested?

- 66 y.o. non-smoking Asian woman found to have an adenocarcinoma of the lung metastatic to the bone
- Is she likely to have a mutated tumor gene?- <u>YES</u>
- Which one? EGFR
- How likely <u>60%</u>
- How will she be tested?-
 - Single Gene
 - "Lung Cencer Panel"
 - 50 gene panel plus translocation panel
- Prognostic/predictive/diagnostic
- <u>Turnaround time 1-7 days</u>

Advanced Lung Cancer– What information do we need to Guide Treatment Selection?

Test for predictive biomarkers

Sequist et al. JCO, July 2013: 1-11.

Prevalence of Molecular Targets in Lung Adenocarcinoma – LCMC¹ Experience

Molecular Target	Frequency (%)
KRAS	25
<i>EGFR (</i> Sensitive) – exon 19 del, <i>L858R,</i> <i>L861Q, G719X</i>	17
ALK rearrangement	8
EGFR (not sensitive) – exon 20 insertion, de novo <i>T790M</i>	4
HER2 (exon 20 insertions)	3
BRAF	2
PIK3CA	1
NRAS	1
MEK1	<1

A Patients with an oncogenic driver mutation who did and did not receive targeted therapy, and patients without an ocogenic driver

- Oncogenic driver found in 64% of patients with full genotyping
- Overall, results used to select targeted therapy in 28% of patients.

MET amplification <1 Kris et al. JAMA 2014; 311(19): 1998-2006.

¹LCMC = Lung Cancer Mutation Consortium

Lung Cancer Genomic directed thereapy

- Driven by Genomic alteration in 30 % of NSCLCa, (adenocarcinoma)
- Most others will get immunotherapy first or second line
- Immunotherapy predictive markers are
 - PD-L1 score
 - Tumor mutation burden

- 74 y.o. man treated for advanced gastric cancer received "FOLFOX" chemotherapy, Taxol plus ramicurimab, and then Pembrolizumab anti-PD-1 checkpoint inhibitor immunotherapy.
- He asks if his physician can search for an abnormal gene we can treat.
- What type of panel might be used?

- 74 y.o. man treated for advanced gastric cancer received "FOLFOX" chemotherapy, Taxol plus ramicurimab, and then Pembrolizumab anti-PD-1 checkpoint inhibitor immunotherapy.
- He asks if his physician can search for an abnormal gene we can treat.
- What type of panel might be used? Multi-gene next generation sequencing (NGS) panel
 - E.g. Foundation Once
 - Our internal 50 or 441 gene panel

NGS- Multi gene Panel – Foundation One

OUNDAT	IONONE	Patient Nam Katherine N	e IcDonald	Report Date 05.29.2012		Diagnosis Colorectal Cano
ate of Birth ender MI Case # edical Record # lock ID	11/14/1962 Female 1062100092 12345 JH32145	Client Physician Additional Recipient FMI Client # Pathologist	Mercy Hospital Dr. Smith N/A FMI00001 Dr. Jones	Specimen R Specimen S Collection M Specimen D Specimen T	eceived ite lethod ate ype	05/15/2012 Colon Core biopsy 10/31/2011 Block
bout the Test: bundationOne is cancer-related	a next-generation s genes.	sequencing (NGS) bas	ed assay which ide	entifies genomi	c alteration	ns within hund
atient Res	sults		Tumor Type	e: Colored	ctal Ca	ancer
Second alle	rations	pp1-2	Genomic alteration	ons identified		
			KRAS G12D	\sim		
2 therapies as:	sociated with clinica	i benefit pp3-4	AFC 2541, 21552			
2 therapies ass 2 therapies with	sociated with clinica h lack of response	pp3-4	Additional disea alterations detec BRAF	se-relevant ge ted	nes with	no reportable
2 therapies ass 2 therapies with 50+ clinical was Therapeu	nociated with clinica h lack of response htic Implicatio	pp3-4 pp3-4 pp5-8	Additional disea alterations detec BRAF	se-relevant ge ted	nes with	no reportable
2 therapies ass 2 therapies with 50+ clinical Therapeu Genomic Alte	n lack of response	pp3-4 pp3-4 pp5-6 DDS	And Esri (Erssz Additional disea alterations detec BRAF	se-relevant ge ted Therapies	nes with	no reportable
2 therapies ass 2 therapies with 50+ clinical Therapeu Genomic Alter Detecter PTEN Loss	n lack of response tic Implications Trations FDA Ap (In pat None	pp3-4 pp3-4 pp5-6 DDS pproved Therapies ient's tumor type)	Additional disea alterations detec BRAF FDA Approved (In another tur Temsirolimus Everolimus	se-relevant ge ted Therapies nor type)	Potent Yes. See Trials set	no reportable ial Clinical frials e Clinical ction.
2 therapies ass 2 therapies with 50+ clinical Therapeu Genomic Alte Detecte PTEN Loss KRAS G12D	Itic Implication rations FDA Ap d None (-) Panit (-) Cetus	I benefit pp3-4 pp3-4 pp5-6 DDS pproved Therapies ient's tumor type)	Aro Est 1, Erisz Additional disea alterations detec BRAF FDA Approved (In another tur Temsirolimus Everolimus None	se-relevant ge ted Therapies nor type)	Potent Potent Yes. See Yes. S Trials see Yes. S Trials see Yes. S	no reportable tial Clinical frials c Clinical ction. ee Clinical ction.
2 therapies ass 2 therapies with 50+ clinical and Therapeu Genomic Alter Detecter PTEN Loss KRAS G12D APC E9411, E1552*	A lack of response attic Implications Trations FDA Ag (In pat None (-) Panit (-) Cetu: None	I benefit pp3-4 pp3-4 pp3-4 bp5-6 DDS pproved Therapies ient's tumor type) umumab‡ kimab‡	And Earl (Ensue Additional disea alterations detec BRAF FDA Approved (In another tur Temsirolimus Everolimus Everolimus None None	se-relevant ge ted Therapies nor type)	Potent Yes. Se Trials ser Yes. S Trials ser Yes. S Trials ser Yes. S	no reportable tial Clinical Frials e Clinical ction. tee Clinical ction.
2 therapies ass 2 therapies with 50+ clinical Therapeu Genomic Alter Detecte PTEN Loss KRAS G12D APC E941', E1552' BRAF No alteration det	Itic Implication Trations FDA Ag (In pat None (-) Panit (-) Cetu: None ected	I benefit pp3-4 pp3-4 pp3-4 pp5-6 DDS pproved Therapies ient's tumor type) umumab‡ kimab‡	Aro Est 1, Ensi Additional disea alterations detec BRAF FDA Approved (In another tur Temsirolimus Everolimus None None	se-relevant ge ted Therapies nor type)	Potent Yes. See Trials see Yes. S Trials see Yes. S Trials see	no reportable ital Clinical frials e Clinical ction. iee Clinical ction. iee Clinical ction.

aried clinical evidence in the patient's tumor type. Neither the therapeutic agents nor the trials identified are ranked in order of potential or predicted

NGS- Multi gene Panel – Foundation One

FOUNDATIONONE		Patient Name Katherine McDonald		Report Date 05.29.2012	Diagnosis Colorectal Cancer	and the second
Date of Birth	11/14/1962	Client	Mercy Hospital	Specimen Received	05/15/2012	
Gender	Female	Physician	Dr. Smith	Specimen Site	Colon	
FMI Case #	1062100092	Additional Recipient	N/A	Collection Method	Core biopsy	
Medical Record #	12345	FMI Client #	FMI00001	Specimen Date	10/31/2011	
Block ID	JH32145	Pathologist	Dr. Jones	Specimen Type	Block	

About the Test:

FoundationOne is a next-generation sequencing (NGS) based assay which identifies genomic alterations within hundreds of cancer-related genes.

Patient Results

Tumor Type: Colorectal Cancer

Genomic alterations	identified
PTEN Loss	
KRAS G12D	2
APC E941*, E1552	.0

Additional disease-relevant genes with no reportable alterations detected BRAF

23

NGS- Multi gene Panel – Foundation One

Therapeutic Implications Genomic Alterations **FDA Approved Therapies FDA** Approved Therapies **Potential Clinical** (In patient's tumor type) Detected (In another tumor type) Trials Temsirolimus PTEN Yes. See Clinical None Loss Everolimus Trials section. KRAS (-) Panitumumabt Yes. See Clinical None G12D Trials section. (-) Cetuximab‡ APC See Clinical Yes. None None E941*, E1552* Trials section. BRAF No alteration detected Data dan baran barata data di

- A 22 y.o. woman has pleuritic chest pain and a PE protocol CT scan shows a 6 cm posterolateral chest wall mass.
- Biopsy shows a small round blue cell tumor
- There is concern for Ewing's/PNET vs embryonal rhabdomyosarcoma.
- What category of test/s can be done to assess for a specific diagnosis?

- A 22 y.o. woman has pleuritic chest pain and a PE protocol CT scan shows a 6 cm posterolateral chest wall mass.
- Biopsy shows a small round blue cell tumor
- There is concern for Ewing's/PNET vs embryonal rhabdomyosarcoma.
- What category of test/s can be done to assess for a specific diagnosis? **TESTS FOR TRANSLOCATION**
- Findings: EFS– PNET- A <u>diagnostic</u> test

Translocations

- TESTS FOR TRANSLOCATION
 - Cytogenetics
 - PCR
 - FISH t(11;22)(q24;q12)
 - Microarray/sequencing

- 44 y.o. man has a CT of the neck after an MVA and trauma. No fracture, but he has an 11 mm thyroid nodule.
- A guideline driven biopsy is indeterminate (FLUS/AUS or follicular neoplasm- cancer risk 10-40%)
- In addition to observation, is there a diagnostic test to determine if he has cancer ?

- 44 y.o. man has a CT of the neck after an MVA and trauma. No fracture, but he has an 11 mm thyroid nodule.
- A guideline driven biopsy is indeterminate (FLUS/AUS or follicular neoplasm- cancer risk 10-40%)
- In addition to observation, is there a diagnostic test to determine if he has cancer ? – YES
 - Thyroseq v.3- (mutations, insertions/deletions, fusions, cnv, in 112 genes. Sensitivity/specificity 94/89% range

Conclusions

- Molecular diagnostics currently play a major role in cancer
 - Diagnostic
 - Prognostic
 - Predictive
- Becoming more widely available
- Becoming quicker and cheaper
- NorthShore is a leader in this field

THANK YOU!

