EMERGING TREATMENTS FOR PARKINSON'S DISEASE

Katerina Markopoulou, MD, PhD

Director Neurodegenerative Diseases Program Department of Neurology NorthShore University HealthSystem Clinical Assistant Professor University of Chicago

Complications of Levodopa Therapy

Motor fluctuations

- Delayed "ON" response
- Dose failure
- End-of-dose wearing-Off
- Unpredictable "OFF" time
- Freezing episodes

Complications of Levodopa Therapy

- Dyskinesias (involuntary"wiggly"movements)
 - Peak dose (30-60 minutes after a dose)
 - Biphasic (occur twice in a dosing interval)
 - Continuous (30 minutes after dose and lasting until next dose)

Response to Levodopa and Progression of Parkinson's Disease

Early PD

- Long duration motor response
- Low incidence of dyskinesias

- Shorter duration motor response
- Increased incidence of dyskinesias

Advanced PD

- Short duration motor response
- "On" time consistently associated with dyskinesias

Olanow CW, Agid Y. http://www.medscape.com/viewprogrm/1847-pnt.

Surgical Treatments for Parkinson's Disease

- Ablative procedures
 - thalamotomy
 - pallidotomy
- Electrical stimulation procedures
- Deep brain stimulation
 - subthalamic nucleus (STN)
 - globus pallidus internus (Gpi)

Deep Brain Stimulation (DBS)

- High frequency, pulsatile electrical stimulation
- Stimulating electrodes are stereotactically placed into the target region
- It can be activated and deactivated with an external device
- The patient has the option of adjusting stimulation parameters

Surgical Candidate Selection

- Disease duration > 5 years
- Confirmed diagnosis of Parkinson's Disease
- Complications of optimal medical therapy
- Continued good response to levodopa
- Absence of dementia
- Absence of severe depression
- Ability to tolerate the surgical procedure

Contraindications to Surgical Treatment

- Blood clotting disorders
- Blood malignancies
- Poorly controlled hypertension
- Overall compromised health status
- Cardiac pacemaker is not a contraindication for DBS surgery

FDA Approved DBS Target Structures

Which is the Optimal Surgical Target?

- Both STN and GPi placement have shown efficacy in treating symptoms of Parkinson's
- STN placement allows for more reduction of medications than GPi
- STN placement is more widely performed and is more effective

Subthalamic Nucleus DBS

- All cardinal features of PD improve
- "OFF" time improved 60%
- "ON" time improved 10%
- Increased "ON" time
- Reduced dyskinesias
- Reduced medication requirements <50%

Subthalamic Nucleus DBS

- Bilateral electrode placement is necessary
- Unilateral placement may be considered in select cases
- Indicated for control of rigidity, bradykinesia and dyskinesias

Globus Pallidus Internus (GPi) DBS

- All cardinal features of PD improve
- Reduced dyskinesia
- Moderate improvement in "OFF" signs
- No medication reduction

Globus Pallidus Internus (GPi) DBS

- Similar benefits to the STN DBS
- Significant improvement in dyskinesia
- Moderate improvement in bradykinesia and rigidity
- Bilateral DBS may be better tolerated than bilateral pallidotomy

Effects of STN, GPi DBS

	STN	GPi
Tremor	+++	++
Bradykinesia	+++	++
Rigidity	+++	++
Gait	+++	++
Dyskinesias	- /+	+++
L-dopa dose decrease	+++	+/0

Symptom Change After Turning on Stimulation

Symptom	Sec.	Min.	Days	Wk/Mo
Rigidity	+++	S	S	S
Tremor	+++	+	(+)	(+)
Bradykinesia/akinesia	+++	+	+	S
Off-phase dystonias	++	+	+	S
Diphasic dyskinesias	(-)	-, (+)	++	+
On-period dyskinesia	(-)		-	++

+ = improvement; - = worsening s = stable

Timing of Surgery

- Are parkinsonian symptoms adequately treated?
- Is the antiparkinsonian regimen optimized?
- Is DBS neuroprotective?

DBS Surgery Timing

- DBS has been an established treatment for advanced Parkinson's disease
- A recent large clinical trial published in 2013 (EARLYSTIM trial) supports surgery earlier in the disease process
- Study participants with levodopa-induced complications had better quality of life and less motor disability than those that received medical therapy only

Post-Operative Medication Requirements

GPi DBS Usually no change Occasional patients with severe preoperative dyskinesias may tolerate higher levodopa doses

STN DBS

Reduction in drug dosage by 50% (range 0-100%)

DBS-Related Adverse Effects

Intracerebral hemorrhage Seizures Infection Breaking of connection lead Eyelid opening apraxia Executive dysfunction Confusion Weight gain

MRI Safety Guidelines (Medtronic)

- MRI field strength: 1.5 Tesla
- MRI type: horizontal bore, not open-sided systems
- DBS leads and extensions should be intact and functional (needs to be checked prior to scan)
- MRI scan parameters:
 - Radio frequency (RF) Specific absorption rate (SAR)
 - Gradient dB/dt parameters

DBS: Mechanisms of Action

- DBS mechanism continues to be a matter of debate
- Inhibition of stimulated region
- Excitation of stimulated region
- Combination of inhibition/excitation
- Modification of brain networks

Imaging of DBS Effects

Electrode

Ь

с

а

Summary

- DBS is effective in treating moderate to advanced PD
- Recent studies demonstrate that DBS is effective also early in the disease process
- Stimulation parameter adjustment can be useful to control symptoms effectively.
- DBS effects reflect changes at a systems level rather than an effect on a single brain structure

Regenerative Therapies in Parkinson's Disease

- Infusion of trophic factors (GDNF)
- Infusion of genes involved in dopamine processing
- Stem cells
 - Fetal cell derived
 - Induced pluripotent stem cells (iPSC)
 - Adipose tissue-derived stem cells

Intracerebral Trophic factor infusion

- Glial-derived neurotrophic factor (GDNF) has been shown to be effective in animal models of Parkinson's disease
- Its use in double-blind, placebo controlled human clinical trials however has been associated with significant side effects and lack of efficacy

Gene Therapy Trials

- Recently published phase ½ open label clinical trial in 15 individuals with advanced Parkinson's disease in which genes involved in the processing of dopamine were infused into the putamen, a brain structure severely affected in Parkinson's diseases (Prosavin)
- The treatment appears safe and well tolerated
- Clinical improvement over a 12 month period was observed in all participants

Vaccines in Parkinson's Disease

- Clinical trial of a vaccine against alpha-synuclein (AFF011)
- It assesses the safety and tolerability of two doses of a vaccine against alpha-synuclein
- trial is ongoing in Europe

Stem cell therapies

- Stem cells derived from fetal tissue have been tried with limited success and conflicting effects
- iPSC are still in the development phase and have not been yet tried in humans
- Stem cells derived from adipose (fat) tissue are being developed to be infused by intravenous injection.
- It is doubtful however, that these cells can reach the nerve cells in the brain, as the brain is protected from the circulation by the "blood-brain barrier"

Information on Clinical Trials

•www.clinicaltrials.gov